Video Preview H26421 Mp4
Α video codec is software or a device that provides encoding and decoding for digital video, and which may or may not include the use of video compression and/or decompression. Most codecs are typically implementations of video coding formats.
Video Preview H26421 mp4
The compression may employ lossy data compression, so that quality-measurement issues become important. Shortly after the compact disc became widely available as a digital-format replacement for analog audio, it became feasible to also store and use video in digital form. A variety of technologies soon emerged to do so. The primary goal for most methods of compressing video is to produce video that most closely approximates the fidelity of the original source, while simultaneously delivering the smallest file-size possible. However, there are also several other factors that can be used as a basis for comparison.
Each compression specification defines various mechanisms by which raw video (in essence, a sequence of full-resolution uncompressed digital images) can be reduced in size, from simple bit compression (like Lempel-Ziv-Welch) to psycho-visual and motion summarization, and how the output is stored as a bit stream. So long as the encoder component of the codec adheres to the specification it can choose any combination of these methods to apply different parts of the content. The decoder component of a codec that also conforms to the specification recognises each of the mechanisms used, and thus interprets the compressed stream to render it back into raw video for display (although this will not be identical to the raw video input unless the compression was lossless). Each encoder implements the specification according to its own algorithms and parameters, which means that the compressed output of different codecs will vary, resulting in variations in quality and efficiency between them.
Prior to comparing codec video-quality, it is important to understand that every codec can give a varying degree of quality for a given set of frames within a video sequence. Numerous factors play a role in this variability. First, all codecs have a bitrate control mechanism that is responsible for determining the bitrate and quality on a per-frame basis. A difference between variable bitrate (VBR) and constant bitrate (CBR) creates a trade-off between a consistent quality over all frames, on the one hand, and a more constant bitrate, which is required for some applications, on the other. Second, some codecs differentiate between different types of frames, such as key frames and non-key frames, differing in their importance to overall visual quality and the extent to which they can be compressed. Third, quality depends on prefiltrations, which are included on all present-day codecs. Other factors may also come into play.
Objective video evaluation techniques are mathematical models that seek to predict human judgments of picture quality, as often exemplified by the results of subjective quality assessment experiments. They are based on criteria and metrics that can be measured objectively and automatically evaluated by a computer program. Objective methods are classified based on the availability of an original pristine video signal, which is considered to be of high quality (generally not compressed). Therefore, they can be classified as:
This is concerned with how video is perceived by a viewer, and designates their opinion on a particular video sequence. Subjective video quality tests are quite expensive with regard to time (preparation and running) and human resources.
The reason for measuring subjective video quality is the same as for measuring the mean opinion score for audio. Opinions of experts can be averaged and the average mark stated as, or accompanied by, a given confidence interval. Additional procedures can be used for averaging. For example, experts whose opinions are considered unstable (such as if their correlation with average opinion is found to be low) may have their opinions rejected.
Bit rate control is suited to video streaming. For offline storage and viewing, it is typically preferable to encode at constant quality (usually defined by quantization) rather than using bit rate control.[1][2] 041b061a72